Current Bioinformatics, 2012, 7, 267-277 267

SemanticDB: A Semantic Web Infrastructure for Clinical Research and

Quality Reporting

Christopher D. Pierce*’l, David Boothz, Chimezie Ogbuji3, Chris Deat0n4, Eugene Blackstone' and

Doug Lenat®

!Cleveland Clinic, Cleveland, OH, USA; ‘PanGenX, Auburndale, MA, USA; >Case Western Reserve University,

Cleveland, OH, USA; JCycorp, Austin, TX, USA

Abstract: Semantic Web technologies offer the potential to revolutionize management of health care data by increasing
interoperability and reusability while reducing the need for redundant data collection and storage. From 1998 through
2010, Cleveland Clinic sponsored a project designed to explore and develop this potential. The product of this effort,
SemanticDB, is a suite of software tools and knowledge resources built to facilitate the collection, storage and use of the
diverse data needed to conduct clinical research and health care quality reporting. SemanticDB consists of three main
components: 1) a content repository driven by a meta-model that facilitates collection and integration of data in an XML
format and automatically converts the data to RDF; 2) an inference-mediated, natural language query interface designed to
identify patients who meet complex inclusion and exclusion criteria; and 3) a data production pipeline that uses inference
to generate customized views of the repository content for statistical analysis and reporting. Since 2008, this system has
been used by the Cleveland Clinic's Heart and Vascular Institute to support numerous clinical investigations, and in 2009
Cleveland Clinic was certified to submit data produced in this manner to national quality monitoring databases sponsored
by the Society of Thoracic Surgeons and the American College of Cardiology.

Keywords: Clinical data, clinical research, electronic medical records, inference, ontology, quality reporting, RDF, semantic

web

1. INTRODUCTION

Demand for medical data to support clinical research and
mandated health care quality reporting has increased
dramatically. This has led to a proliferation of registries,
academic databases, and ad hoc subject-specific databases to
manage patient medical data as multiple hospital
departments and sections attempt to meet these demands.
Even though these registries are designed to capture data
about different treatments or diseases, they frequently are
redundant, containing data on some of the same patients and
sharing many of the same variables such as demographics,
risk factors and outcomes. Because much of the data
contained in these registries is manually abstracted from
electronic or paper charts, not only are those data
redundancies inefficient, but values for the same variables
may differ among registries, which can undermine the
reliability of research findings, erode the trust of
investigators and administrators, and call into question the
accuracy of quality metrics derived from them.

After several years of investigation, experimentation and
proof of concept, Cleveland Clinic embarked on a project
that, by 2003, focused on the use of emergent semantic web
technology to address these issues [1]. Our goal was to
create a data management system with sufficient flexibility
and extensibility that any variable could be added to the
system, data could be collected once and reused for multiple

* Address correspondence to this author at the Cleveland Clinic, JJ-40, 9500
Euclid Avenue, Cleveland, OH 44195, USA; Tel: +1-216-445-8196; Fax:
+1-216-636-0925; E-mail: piercecl@ccf.org

2212-392X/12 $58.00+.00

purposes, and intelligent agents could be devised for
automated discovery and machine learning, particularly
across different medical disciplines. We chose semantic web
technology over conventional relational techniques for
several reasons:

= it facilitates automated inference, which enables simpler
queries with more complete results, and automated
discovery by intelligent agents;

= jt allows information that is expressed in disparate
vocabularies to be readily integrated without degradation
of meaning or quality;

= it adapts to vocabulary and data model changes more
readily than conventional relational techniques; and

= it is standards-based and web-friendly.

This effort resulted in the creation of SemanticDB, a
content repository and data production system, which was
released for use at Cleveland Clinic in January of 2008.

SemanticDB was developed and implemented using an
existing registry of heart surgery and cardiovascular
intervention cases with over 500 variables, and spanning
more than 30 years with almost 200,000 patient records. At
the time we began our project, this registry was being used
for research generating over 100 publications per year,
internal administrative reporting, and external quality
reporting. By using such a large and complex registry to
develop our system, we were forced to deal with issues of
functional range, scalability and performance that could have
been overlooked with a smaller test case.

© 2012 Bentham Science Publishers

268 Current Bioinformatics, 2012, Vol. 7, No. 3

This paper is an overview of SemanticDB’s architecture,
data model, inference patterns, and uses in research and
quality reporting. Before turning to these topics, we offer a
brief introduction to some of the semantic web concepts that
underlie SemanticDB.

2. BASIC CONCEPTS IN
TECHNOLOGY

SEMANTIC WEB

"A little bit of semantics goes a long way." -- Professor
James Hendler, Rensselaer Polytechnic Institute.

Semantic web technology was designed to facilitate
automated reasoning at web scale. It is based on the
Resource Description Framework (RDF) [2] a W3 C standard
knowledge representation language that captures information
as assertions or friples. Each assertion represents a single
statement of fact and consists of three parts roughly
corresponding to subject-verb-object of a simple sentence, or
subject-predicate-object. A set of RDF assertions is known
as an RDF graph because it can be viewed as a directed
graph of arcs and nodes, as the subject or object of one
assertion is used as the subject or object of other assertions.
Cleveland Clinic’s registry of 200,000 patient records
comprises an RDF graph of roughly 80 million RDF
assertions.

Inference is the process of concluding new facts or
assertions from existing facts or assertions. Although any
process that creates new assertions from existing assertions
could be viewed as inference, RDF inference is usually
performed by a carefully constructed inference engine or
reasoner. For example, from the assertion (written in an RDF
syntax called N3 [3]):

:tl a :AorticValve .

which means that the thing called :t1 is an aortic valve, an
inference engine having knowledge that an :AorticValve is a
kind of :HeartValve could infer the following assertion:

:tl a :HeartValve .

Such an inference makes sense to a human who knows
anatomy, but an inference engine must be explicitly told
what inferences it should perform. SemanticDB uses a set of
specific inference rules and an ontology representing the
domain to execute these inferences.

An inference rule is a template involving variables or
placeholders that will be replaced with actual values when an
inference engine matches the rule against existing RDF
assertions. For example, the following rule, written in N3,
indicates that every aortic valve is a heart valve:

{?va:AorticValve.} =>{ ?va:HeartValve.}.

In N3, the symbol "?v" (or any symbol beginning with
"?") is treated as a variable, so when this rule is applied to
the assertion above, :t1 will be substituted for ?v. The
symbol "=>" is read as "implies". If assertions are found in
the knowledge base that satisfy the left side of this rule, then
the inference engine adds the assertions on the right side --
the entailments -- to the knowledge base. This style of
inference is known as forward chaining.

In some cases it would be inefficient or infeasible to
attempt to pre-compute all of the new facts that might
theoretically be produced by a set of rules in a forward

Pierce et al.

chaining mode, especially when many would be irrelevant to
a given query. In such cases, an inference engine that
supports backward chaining can be used instead. With
backward chaining, inference is performed only when a
query is issued: the inference engine starts from the query,
treating it as a goal, and then works backward from this goal
to figure out a sequence of available inference rules that
would enable the existing data to support the conclusions
needed to answer the desired query. Neither forward nor
backward chaining is universally better than the other. Each
approach has its advantages and disadvantages. Some
inference engines, such as Cyc [4], support both forward and
backward chaining or even a mix of the two.

The :HeartValve inference illustrated above is very
simple and involves only one step of inference. Indeed,
inferences need not be complex to be extremely useful. For
example, this inference alone enables a query for
:HeartValve operations to return operations involving :tl,
even though :t1 was recorded as being an :AorticValve.
However, the main value of inference is normally obtained
when an inference engine applies a set of inference rules
recursively, drawing conclusions that may involve long
chains of inference and many rules. For example, if other
inference rules indicate that a :HeartValve is part of the
:Heart, and that the :Heart is located in the :Thorax, then a
query for operations in the :Thorax would find those that
involve :t1, through two steps of inference.

In addition to specific rules, an ontology can tell an
inference engine what inferences to perform. An ontology is
“a formal representation of knowledge as a set of concepts
within a domain, and the relationships between those
concepts” [5]. For example, a medical ontology may indicate
that the aortic valve is a kind of heart valve. This may be
expressed formally in the N3 RDF syntax using the OWL [6]
ontology language as:

:AorticValve owl :subClassOf :HeartValve .

Given this assertion, an OWL reasoner already knowing
the semantics of owl:subClassOf will know to conclude that
:tl is a :HeartValve if an assertion has already indicated that
:tl is an :AorticValve. The use of ontologies therefore
simplifies the task of specifying what inferences are desired.

SemanticDB relies heavily on inference to perform or
facilitate several functions. Both forward and backward
chaining are used, with the decision to use one or the other
based on practical trade-offs between query latency
performance and data storage space. This allows queries to
be simpler while producing complete results, and it allows
the system to operate more efficiently by intelligently
avoiding the pre-computation of unnecessary intermediate
data.

3. SEMANTICDB ARCHITECTURE OVERVIEW

SemanticDB was designed to support the data
management requirements of both clinical research and
quality-of-care reporting. This involves the flexible capture
of new data elements through the generation of new data
entry forms, secure storage of this data, flexible cohort
identification, merging of additional data derived from
multiple data sources that use diverse vocabularies, protocols
and data formats, and production of customized views of the

SemanticDB: A Semantic Web Infrastructure for Clinical Research

data [7]. To achieve these functional goals, SemanticDB
consists of three main subsystems: 1) a content repository; 2)
a query interface tailored to the task of identifying patient
cohorts, known as Semantic Research Assistant (SRA); and
3) a customized data production pipeline.

3.1. Content Repository

The content repository of SemanticDB facilitates data
collection, document management, and formal knowledge
representation for use in managing longitudinal clinical data
on individual patients. This repository manages XML [8]
patient record documents and converts them to RDF graphs
as needed for downstream semantic processing [7]. Its
architectural features include the ability to automatically
generate XForms [9] data input screens from a meta-model
describing the required data collection fields, a file-based
transactional storage system, an RDF-based work flow
management system for controlling the data capture
processes, and XML-to-RDF data transforms using
automatically generated XSLT [10] templates.

The content repository’s primary architectural
requirements include the automation of certain aspects of
data entry, structure, storage, display, and retrieval of patient
data with minimal intervention by traditional database
administrators and computer programmers. It is designed to
use a declarative style in which the desired objective is
formally described, rather than indicating the specific steps
required to achieve it. One component takes a meta-model
and generates document schemas, a formal patient record
ontology, data transforms, validations, and document
templates. Another component takes an abstract
representation of a data entry form (with references to terms
in the model of the domain) and generates a user interface
using XForms.

The architectural style adopted (and corresponding set of
constraints) is based on the desire to automatically generate
and maintain a flexible content management system built
around a centralized patient record vocabulary authored by
domain experts and knowledge engineers. The vocabulary
incorporates a meta-model that provides a formal semantics
for hierarchical XML document composition, and an abstract
framework for modeling medical terms in a way that
facilitates semi-automated use of native XML and RDF
representations somewhat interchangeably. XSLT templates
used to transform the XML patient records to RDF are also
generated from the meta-model. A small set of
predetermined generic rules are applied to the meta-model to
produce the XSLT templates that translate the hierarchical
relationships between the data elements expressed in the
XML representation of the patient data to corresponding
nodes in an RDF graph. The generated XSLT templates
correspond to (and match) elements in the XML patient
record document. Each template is responsible for
producing some RDF content, in RDF/XML format, that
captures statements about what the content in the XML
document denotes. In short, the transformations capture the
semantics of the meta-model and the intuition that the XML
vocabulary encodes the RDF meaning of the domain.

Given a workflow that starts with the meta-model,
produces its data management artifacts (e.g., the XSLT
templates), and generates an RDF dataset for a given

Current Bioinformatics, 2012, Vol. 7, No. 3 269

SemanticDB instance, structurally additive changes to the
meta-model can be made asynchronously without incurring a
misalignment between the data and the generated transforms
and schemas. Certain leaf nodes in the input document
correspond to controlled vocabularies used as “pick lists” in
the data collection user interface. The collection of their
allowed values are properly modeled in the generated OWL
ontology, following best practices regarding the modeling of
value partitions. So, when new values are added to the
controlled vocabulary, the transforms and ontologies for the
new meta-language can be regenerated and used to replace
older artifacts and -- upon subsequent data collection -- new
content is properly reflected in the RDF dataset without loss
or corruption of the old data.

Over the course of the SemanticDB project, RDF
assertions were saved to two different RDF stores. Initially,
we used the relational schema for RDF employed by
RDFLib [11] with some modifications to support the entire
SPARQL [12] language for efficient storage and retrieval
from a MySQL database [13]. An optimized SPARQL
endpoint to this RDF store yielded one to two orders of
magnitude improvement in query response time over an
unoptimized endpoint [13]. This work was the basis for a
doctorate at the Case Western Reserve University’s
Electrical Engineering and Computer Science department.
In 2010, we added the Oracle 11g Spatial product [14] as
another RDF store fed by SemanticDB.

Once patient records have been transformed into RDF
and placed in an RDF repository, SemanticDB performs
graph expansion — a process in which forward chaining
inference is performed and the resulting assertions are added
back into the RDF knowledge base. This allows subsequent
queries to be simpler while still returning complete results,
without requiring backward chaining inference that would
slow the query. For example, a query for heart valve
procedures would immediately include aortic valve
procedures in its results. Graph expansion is currently driven
by a small set of inference rules written in N3 and
implemented as a production rule system using a RETE [15]
decision network algorithm running in a large, symmetric
multi-processing cluster. The graph expansion component
relies on traditional sideways information passing strategies
to optimize the firing of the rules by the production rule
system with respect to a set of a priori queries until a fixed-
point is reached. The decision network is built from a set of
rules re-written with respect to the queries using the
generalized magic sets (GMS) method and the individual
RDF graphs for each patient record are fed through the
decision network concurrently.

3.2. Query Interface

The cohort identification interface, Semantic Research
Assistant (SRA), shown in Fig. (1), was developed in 2007
in partnership with Cycorp, Inc. It is based on the Cyc[4]
inference engine, a powerful reasoning system and
knowledge base with built-in capability for natural language
processing, forward-chaining inference and backward-
chaining inference. SRA incorporates Cyc's natural
language processing to permit a user to initiate a cohort
selection query by typing an English sentence or sentence
fragment. Natural language is convenient for users, but

270 Current Bioinformatics, 2012, Vol. 7, No. 3

Task o8] (.’mmﬂimﬁf 1

g iﬁﬂmmnwsmw:wmaf;ﬁ‘ S3te I

Pierce et al.

ot | i

ﬁm«a mtmmm wtery epans g

Y @ Gt vatvas o010 4

meoma Ccosseany ioterEnion 8 s ot totsang are b

15 A LORy Rlasy DAY
A AR TR PR

R SRS

@ﬁ St Fragropty
e LR B Yo Sty CH3

i At
Vo pateet it [T—

o Gty ity Begash ol
£ & PRIGABGGE STty

@ LBanaeis Pragronedy

W S Pt
G Koot Sracen
oo ameny Liteny
w Areattg 4 Loowige COF Wetica! Reseanh weing
e SR
Genroks Hiskory

| ngwtss | Repsdt | | Ratst |

Resats. %6 0] Tawiost vone W L) Covope stlicatonss | Mue |

;
i

o HiShaswesn 1Y wé
Date 3 6 :

P2 00 Manch 34 2008 RS M B 3L 0 L

LROEN0 Fetraaty L2, UG8 VW00 Pty 2. R N}
FIBOHT M 8 HTHEAD Wasch 102008 i
13600 Harch 172008 TRIBB0 Monh ¥ 2008 %

TRAR 0T Apet 21 H0GE HAGDS AP LY

O 1400, Apekt Y2, 2008 SERIRPT Aped 10200 }
| e 105400 A 29, 2008 ABBADQ et 23 2008 i
V240G, Rty 0.0 WERW B8 i

CRIG00 M 87,3008 SRIN0 Maeh 37 308 i;

it s i o RRaan

Status: ide Wasyass

Fig. (1). The Semantic Research Assistant (SRA). This annotated screen shot shows how the SRA was used to query for patients who had
a coronary artery bypass graft (CABG) between 2008 and 2010 (inclusive) and after a percutaneous coronary intervention (PCI). In box 1,
the user types an English sentence fragment for the desired query: “Patients who had cabg with prior PCI at CCF date”. The SRA parses this
sentence, looking up specialized terms such as “cabg” and “PCI” in its knowledge base, and proposes likely interpretations for fragments of
the query in box 3. The user selects desired interpretations from box 3 and drags them to box 4, where they are combined to form the full
query, which is displayed in a precise, English-like dialect for the user to verify. Alternately, the user may drag commonly used concepts
from box 2 to box 4, for inclusion in the query. In box 3, the user has the option of further constraining the query with specific temporal
constraints that are displayed visually on a timeline. Box 6 shows a sample of the query results. (For privacy, patient IDs have been
obscured.) If the query is likely to take longer than the user wishes to wait, the query can be scheduled and the user will be notified when the
results are ready. When the query results are ready they can be saved or exported as a CSV cohort file for use in the next step in the research

process or the data production pipeline.

notoriously ambiguous, especially when interpreted by
machine. To prevent misunderstandings, SRA proposes
plausible interpretations corresponding to fragments of the
user’s natural language query, and allows the user to select
and confirm the desired interpretation. Temporal constraints
are extremely important in cohort identification, but the
precise logic for them is hard to interpret correctly from a
natural language query. Therefore, the SRA interface also
allows the user to view and express temporal constraints
graphically on a timeline.

Cohort identification currently uses the most
sophisticated forms of inference, both because it combines
natural language processing with formal queries, and
because it performs temporal reasoning. Again, Cyc’s built-
in backward chaining capabilities are used to retrieve only
the data that is needed to answer the user’s cohort
identification query.

Internally, the SRA uses domain-specific medical
ontologies in conjunction with the Cyc general ontology and
knowledge base of real world facts [16] to convert the
natural language query into a formal representation in CycL
[17], which is then used to generate the appropriate
SPARQL queries. The SPARQL queries are submitted to the
SemanticDB RDF store for execution, and if necessary, SRA
submits the query results to Cyc for further inference-based
processing to arrive at the proper results. These results are
returned to the SRA interface in the form of a list of cases
(patient IDs and index event identifiers) as they are retrieved
from the repository. Use of the SRA is illustrated in Fig. (1).

3.3. Data Production Pipeline

The data production pipeline takes a cohort file typically
created by the SRA, selects corresponding patient records
from the content repository, combines those records with
additional data from other sources, such as blood tests results
and echocardiogram findings, and processes the resulting

SemanticDB: A Semantic Web Infrastructure for Clinical Research

L3 Cleveland Clinic
Export Tracker

i 21219 1.0 Left Atrial Appenda

Results downloaded 11:16 am

Eaxpuot coquests
Now
Active

Archived Requests

ation

Current Bioinformatics, 2012, Vol. 7, No. 3 271

i | Bettings Contritnatinns { Logowt : 53

Dowrload

RE083 6 2 Cost Analysis of Robolic Mifral Valve Rel

R1203 1.0 Operative Risks for Repair ¢f Proximal Aorlic Disease
Results downloaded 3.27 pm, 24 Feb - 7547 "

User groups Results downloaded 3.08 pm, 24 Feb . 1172

SEARDL query

Toclbox 17224 1.0 AV & Pror Abored Stemolomy
Broi s page | Resulls downloaded 2:30 pm, 24 Feb . 371 o

Help

RO162 4 0 Acule Type | Dissection

Results downioaded 3:53 pm, 22 Feb - ¢

R1216 1 0 Degeneralive Milral Valve Surgery
Resuits downloaded 1:45 pm_ 17 Feb - 8110 obe

R1215 1.0 Seplal Mvectomy 2007 - 2010

R1208 10 CABG vs PCI

Resulls downdoaded 783 am, 16 Feb .«

R1143 1.2 Long Teun Results of Bieusoid Aorlic W

Results downloaded 11:35 am, 17 Feb . 767 oisenations

Results downlcaded 513 pm_ 13 Feb . 7

R1086 4 0 Is Coronary Investigation and Intervention prior to Thoracic and Thoraco-abdominal Aneurysm or

Dissection Repair needed?

Results downloaded 2:43 pm. 13 Feb - 581 oserations

Fig. (2). Export Tracker. The Export Tracker manages a queue of pending data production requests. Each request takes a cohort file and
produces a set of data modules comprising some 300 commonly needed variables ready for statistical analysis. Because this data generation
is computationally intensive for cohorts involving many observations, and because researchers often wish to run the same requests multiple
times as patient records in SemanticDB are updated, both the requests and the results are automatically archived for potential reuse. This
screen shot shows several data requests that have been run and automatically archived.

records to generate datasets appropriate for statistical
analysis or reporting. This pipeline is driven by a
combination of various automation scripts, which retrieve
and normalize the required data, and a web-based interface
known as “Export Tracker”, shown in Fig. (2), which
manages an ongoing queue of data requests. The resulting
data are also used with further inferencing to generate
administrative and quality measurement reports required
both internally and externally, as discussed in Section 6.

In addition to custom software, the SemanticDB
components described above were constructed using
software from open source projects including an XML &
RDF content repository bundled with 4Suite [18] (for storing
XML patient records and invoking XSLT conversions to
RDF), RDFLib [11] (for processing RDF data from Python
modules that generate data exports), FuXi [19] (for inference
rules processing), MySQL [20] (for storing intermediate
results), Simile Exhibit [21] (for browsing RDF patient
records), Mozilla’s Firefox with XForms extensions [22] (for
patient data collection forms), and Callimachus [23] (for the
“Export Tracker”), and commercial systems including Cyc

[4] (for the SRA and report generation), Oracle 11g Spatial
[14] (for RDF storage) and ViaDuct [24] (for data mapping).

4. PATIENT RECORD ONTOLOGY

As described above and elsewhere [25], SemanticDB
employs a domain meta-model, captured in RDF, to drive
much of its functionality. This meta-model is constructed
using a small number of properties and classes with clearly
defined semantics, which are used to automatically generate
an XML schema for structured data collection, an OWL
patient record ontology to serve as a schema for the data in
RDF, and an XSLT template to convert data captured as
XML into RDF. Its main function is to describe data
elements required for collection in the repository rather than
attempting to capture the full ontology of the domain.
Consequently, the model focuses on the hierarchical
relations present in the XML patient record, which are then
used to drive XML-based data capture tools. This is
accomplished by using the dnode:contains predicate to
represent hierarchical XML relations.

272 Current Bioinformatics, 2012, Vol. 7, No. 3

For example, the snippet of the meta-model shown below
describes the data to be collected for an aortic valve during a
diagnostic procedure such as an echocardiogram. The class
ptrec:AorticValve has common RDF schema properties
including a rdfs:label, which can be used in generating
human-readable views of the data, rdfs:comment, which can
include a human-readable definition of the class, and
rdfs:subClassOf, which specifies a “kind-of” relationship to
another class. In this case, the rdfs:subClassOf property is
used to specify the cardinality of the AorticValve class
because it is a kind of OptionalSingleton meaning that there
can be zero or one instance of this class in a given context. In
addition, there are properties unique to the SemanticDB
meta-model that are designated with the “dnode:”
namespace. As noted above, the dnode:contains property
specifies that the class is an XML parent to the class listed as
the object of the property. The Boolean property
dnode:index indicates whether the class should be included
in the RDF graph generated from an XML instance of the
model. The dnode:inheritsConstraints property specifies that
the properties of its object in this case the
ptrec:CardiacValveData class, are also properties of the
ptrec:AorticValve class. This allows classes in the RDF
domain model, which must be unique, to appear in multiple
subtrees of the generated XML representation. In the Patient
Record model, the ptrec:CardiacValveData class is inherited
by each of the four specific valve classes — aortic, mitral,
tricuspid and pulmonary.

Excerpt of the SemanticDB meta-model, in N3:

:AorticValve a dnode:DataNodeClass;

rdfs:comment """The aortic valve is situated at exit
of the left ventricle of the heart where the aorta
begins, and lets blood from the left ventricle be
pumped up into the aorta but prevents blood once it
is in the aorta from returning to the heart.""";

rdfs:label "Aortic Valve";

dnode:Index "true";

dnode:inheritsConstraints :CardiacValveData;

dnode:contains
:LeftVentricularOutflow TractMeanGradient,
:LeftVentricularOutflow TractPeakGradient;

rdfs:subClassOf dnode:OptionalSingleton .

:CardiacValveData a dnode:DataNodeClass;

rdfs:label "Cardiac Valve Data";

dnode:contains
:CardiacValveMeanGradient,
:CardiacValveOrificeAreaData,
:CardiacValvePeakGradient,
:CardiacValveRegurgitantJetNumber,
:CardiacValveRegurgitation,
:CardiacValveRegurgitationFraction,
:CardiacValveStenosis;

dnode:inheritsConstraints
:CardiacValveAnatomicalPathologyReference,
:CardiacValveEtiologyReference,
:CardiacValveTypeData;

rdfs:subClassOf dnode:ZeroOrMore.

SemanticDB also makes use of some of the more
semantically rich relations available in OWL. To facilitate
easier queries, any dnode:contains relationship in the meta-

Pierce et al.

model can be aliased with a more descriptive predicate that
will be used both in the generated OWL ontology and the
RDF graph of a particular patient record. For example, in the
meta-model a patient contains a birth date as shown in the
following RDF triple.

ptrec:Patient dnode:contains ptrec:BirthDate .

This assertion is used to generate a parent-child
relationship in an XML patient record as shown in the
following example.

<Patient>
<BirthDate>1958-03-05T00:00:00</BirthDate>
</Patient>

But the meta-model also has an alias for this particular
dnode:contains relation using the predicate “hasBirthDate”
so that an RDF representation of this same relation in the
example above has the following subject-predicate-object
form.

ptrec:Patient
ptrec:hasBirthDate
"1958-03-05T00:00:00"xsd:dateTime .

Due to its focus on data collection and management, the
ontology generated from SemanticDB's meta-model is a
skeletal depiction of the medical domain relevant to a patient
record. However, careful use of standard terminologies
facilitates linking the generated ontology to other, richer
ontologies to support more useful inference. For example,
each of these four valve classes, when represented in the
OWL ontology, can then be linked to other ontologies that
include additional information about these valves such as
anatomical relationships, physiological characteristics, and
prosthetic device properties.

4.1. Capturing the Medical Domain

Typically, registries of medical data are constructed
around an indexing event, such as a particular kind of
surgical procedure, and the patient’s state and clinical
experience before, during and after the procedure, and are
documented by specific variables. For example, a patient
undergoing cardiac surgery would have preoperative risk
factors documented, such as diabetes status and history of
myocardial infarction, and post-operative complications,
such as reoperation for bleeding. This registry structure
works well as long as the indexing event is the event of
interest for a given use. However, if one’s interest is another
event — say a cardiac catheterization that was performed
some time prior to the surgery — it is no longer clear that the
description of the state of the patient before the cardiac
surgery also applies to the state of the patient prior to the
catheterization. The myocardial infarction that occurred
before the surgery may have occurred after the
catheterization, and thus would be a post-procedure state for
the catheterization. With this kind of structure, each event of
interest requires a separate registry often having considerable
content overlap with other registries, resulting in a system
that is both difficult to use and wasteful of resources needed
to collect and retrieve data.

To avoid these problems, our goal in constructing a
model of the cardiovascular medicine domain in
SemanticDB was to produce a record of the patient’s

SemanticDB: A Semantic Web Infrastructure for Clinical Research

medical history that would be useful from many frames of
reference including different events of interest and
definitional perspectives. To accomplish this, we divided the
patient record into three fundamental parts — patient
demographics, patient history, and medical events — and then
defined core data elements (described below) within each of
these parts that could be used to derive values consistent
with particular definitions, as illustrated in Fig. (3).

Patient demographics are characteristics of the patient
that do not change, such as birth date, sex at birth, race, etc.,
or things that do change, but whose change history is not
medically relevant, such as billing address, phone number,
etc. Patient medical history consists of disease, treatment and
social histories documented during clinical encounters.
Rather than capture all histories anew for each encounter, the
SemanticDB patient record model documents changes in
medical history only after the initial baseline history is
collected during the first patient encounter. New or updated
medical history data documented in subsequent encounters
are tagged with the encounter date-time so that a correct
history can be determined for any index event regardless of
when it occurred. Medical events include encounters,
diagnostic exams, treatment procedures, and morbidities
(adverse events). For each event, the model identifies the
event type/description, start and end date-times (modeled to
allow fuzzy time), event place, and data source. Any number
of additional variables can be added to this core set of event
properties to fully document a given event. By documenting
all relevant medical events independently, one may choose
any of one them as an index event and determine the
patient’s pre-event and post-event characteristics by
interrogating data associated with events that occurred before
and after the index event respectively.

Definitional flexibility derives from a common
denominator focus on the collection of core data elements
rather than secondary or derived data. The definition of
terms such as “current smoker” or “surgical site infection”
can vary among registries and through time within the same
registry. A core data elements approach takes these terms
and breaks them down into atomic variables that can be
logically combined to derive the particular values required
by a particular registry. In the case of current smoker,
definitions vary by how recently a patient must have quit
smoking to still be considered a current smoker, and what
the patient smoked (e.g., cigarettes only, any tobacco
product, etc.). In the SemanticDB patient record model, we
collect the patient’s smoking status (never, quit or current),
the date the patient quit smoking if they quit, and the
materials smoked. These core data elements allow us to
derive an appropriate value for the field “current smoker?”
regardless of whether the intended definition includes
patients who smoked within one year or one month of the
index event. Of course it is often impractical to collect core
data elements for all fields. We adopted a pragmatic
approach that sought a middle ground between infinitely
reusable atomic detail and special purpose definitions with
limited reusability.

5. USES IN CLINICAL RESEARCH

Clinical research uses prospectively and retrospectively
collected clinical data to investigate the short and long term

Current Bioinformatics, 2012, Vol. 7, No. 3 273

effects of medical care on survival, quality of life, cost of
care delivery and other dimensions. In contrast to clinical
trials in which patients are randomly and blindly assigned to
different treatment groups, comparative effectiveness studies
use data on actual nonrandom clinical care to compare the
effectiveness of different treatments. Clinical research
involves several steps including identifying the cohort of
patients who match specific inclusion and exclusion criteria,
compiling and collecting the various data needed on these
patients to perform the study, creating a dataset suitable for
statistical analysis, and conducting and interpreting the
statistical analyses.

To identify patient cohorts for individual studies in
SemanticDB, we use the SRA query tool described above.
Queries specifying patient inclusion and exclusion
characteristics are constructed in SRA by entering a natural
language string, selecting from a library of query fragments
derived from the natural language input, and using a
graphical tool for diagramming temporal relationships
among events. When a valid query has been composed, the
SRA generates the appropriate SPARQL queries and submits
them against the SemanticDB RDF store. Results in the form
of patient and index event identifiers are streamed back to
the SRA interface where they can be stored in SRA for
further use in other queries and exported as delimited files
for use elsewhere.

Based on the patient cohort identified by SRA, data can
be pulled from SemanticDB for building the analysis dataset
by either submitting the cohort list to the Export Tracker
utility in Fig. (2) to extract standard data modules, running
additional queries in SRA against the saved cohort, or
composing SPARQL queries directly in SemanticDB’s
SPARQL endpoint.

The Export Tracker takes a cohort list of index events,
generated by the SRA or any other source, and matches it
against patient records in SemanticDB. If no match is found
for a particular index event, or if the match is ambiguous
(e.g., multiple index events on the same day), Export Tracker
flags these cases so that the issues can be resolved by the
user before resubmitting the data export request. When a
valid cohort list has been accepted by Export Tracker, it runs
a predefined set of data export modules that contain some
300 variables needed for most studies including pre-event
patient characteristics, index event details, post-event
complications, and the results of long-term patient follow-
up. These data exports are generated by retrieving the
patient’s XML data file to guarantee that the data are current,
augmenting it with data from other sources using an external
data service in SemanticDB, and automatically converting it
to RDF for query and rule-based transformations, as
previously described.

If data needed for a study are present in SemanticDB, but
not provided in a standard data export module, they can be
retrieved for the study cohort using queries composed in
SRA, or, if the queries involve more complex logic, through
hand-built SPARQL queries run through the SPARQL
endpoint. SemanticDB can also support the collection of
study-specific data not already in the repository, through
routine data collection and integration. New variables can be
added to the meta-model, and Web-based data collection
forms can be generated for use in manual abstraction of these

274 Current Bioinformatics, 2012, Vol. 7, No. 3

PatientRecord

hasHistory

hasEvent

Pierce et al.

hasPatient

starisNoEarlierThan

rdf:type

Hospitalization

PatientHistory

hasPlace

Date literal

Fig. (3). Portions of the patient record ontology used in SemanticDB. The PatientRecord includes information about medical events
(“Event” branch), the patient's medical history (“Patient History” branch), and patient demographics (“Patient” branch).

fields. Once these data have been added to SemanticDB,
they can be retrieved by any of the methods discussed above.

From 2009 through June of 2011, over 200 clinical
investigations utilized SemanticDB to identify study cohorts
and retrieve appropriate data for analysis. These studies
ranged from relatively simple feasibility assessments to
extremely complex investigations of time-related events and
competing risks of the patient experiencing a certain
outcome after treatment. Prior to the deployment of
SemanticDB, the cohort identification and data export
queries for all of these studies would have been performed
by a skilled database administrator (DBA) interpreting
instructions from domain experts. Using SemanticDB, a non-
technical domain expert performed all of the queries except
those requiring the manual construction of SPARQL, which
made up a less than 1% of all queries of SemanticDB. Not
only did this reduce the costs of performing research queries
by circumventing the need for a DBA, but it is also likely to
have improved accuracy through elimination of the
interpretation of the query instructions by a DBA who is
often unfamiliar with the domain or study.

6. USES IN QUALITY REPORTING

Healthcare outcomes reporting provides a means of
quantitatively measuring the quality of care that patients
have received at an institution, for use by both practitioners
and administrators within that institution, and for comparison
across institutions. Within Cleveland Clinic's Heart and
Vascular Institute (HVI), SemanticDB has been used to
generate outcomes reports both for internal and external
consumption. Internal reports are generated monthly, and

external reports are generated quarterly for both the Society
of Thoracic Surgeons (STS) Adult Cardiac Surgery National
Database and the American College of Cardiology (ACC)
CathPCI Database.

An increasing number of agencies and medical societies
are requiring such reports, and this places a heavy burden on
healthcare institutions to produce the required data in the
formats, and according to the precise definitions, that these
agencies require. Unfortunately, although many of the
variables required by these agencies are similar and partially
overlap -- such as history of smoking -- precise definitions
vary significantly, and this makes it difficult to use the same
source data for all reports. Typically, an institution is forced
to manually abstract the data for each report separately to
conform to the requirements for that report. This duplication
of effort not only wastes time and money, but it also creates
potential legal and administrative issues if conflicting data
are entered inadvertently. However, by basing our ontology
on core data elements (as described above), SemanticDB is
able to use automated inference rules to produce values for
multiple variables required both within a report and across
multiple reports.

For example, Fig. (4) shows four core data elements —
Anti-anginal medication, Date/time, Medication prescribed
and Medication taken — that have been extracted from three
pieces of source information in the patient's medication
record: Medication type: Anti-anginal medication,
Date/time, Medication taken or prescribed. In some cases,
the extraction of core data elements from source information
can be fully automated. This is possible when the source
information exists in structured form — not as part of an

SemanticDB: A Semantic Web Infrastructure for Clinical Research

Question to Answer

Core Data Element(s)

Current Bioinformatics, 2012, Vol. 7, No. 3 275

Source Information

“Indicate if the patient

Anti-anginal medication

Medication type:
Anti-anginal medication

B e

has taken or has been

prescribed anti-anginal
medication within the

Dateftime

Date/time

past two weeks.”

“Indicate the date of

Medication prescribed

Medication prescribed
or taken

the patient's most

recent anti-anginal
prescription.”

Medication taken

Fig. (4). Derivation of quality metrics from core data elements. Source information is used to derive atomic “core data elements” that are
then used in combination by automated inference to produce answers to the specific questions required in each report.

arbitrary narrative — with fine enough granularity. In other
cases, the extraction of core data elements may require
manual abstraction by trained medical personnel examining
the patient record. Ideally, the original source information
should be collected in structured form with fine enough
granularity to enable fully automated downstream use of the
information. However, because the information collection
procedures for a patient are widely distributed throughout
that patient's many points of care, and they often involve
multiple medical specialties using disparate information
systems, the goal of fully automating the extraction of core
data elements has not yet been achieved.

Once the values for core data elements have been
extracted, they are combined using fully automated inference
rules to compute the answers to specific questions required
of a report. For example, Fig. (4) illustrates how these core
data elements are used to answer the question: "Indicate if
the patient has taken or has been prescribed anti-anginal
medication within the past two weeks.", as required in the
CathPCI v4.3 report. Using additional inference rules, these
same core data elements are also used to compute the answer
to the question: "Indicate the date of the patient's most recent
anti-anginal prescription."

The core data elements ontology itself, and the inference
rules that generate the answers to reporting questions, are
derived through manual analysis of the various questions that
must be answered, in order to identify the critical concepts
that can be turned into core data elements. As the system is
used to produce more reports, more common data elements
are reused and the payoff increases.

For example, the CathPCI report v4.3 seq. #6130
“Mid/Distal LAD, Diag Branches Stenosis” requires that the
reporting institution "Indicate the best estimate of most
severe percent stenosis in mid/distal left anterior descending
(LAD), including all diagonal coronary artery branches as
determined by angiography." Within this question, the
phrase "all diagonal coronary artery branches" expands into
several critical concepts in cardiac anatomy:

= Diagonal 1
= Diagonal 2
= Diagonal 3

= Lateral First Diagonal

= Lateral Second Diagonal

= Lateral Third Diagonal

= Left Anterior Descending Major Septal Perforator

These concepts are captured as core data elements in the
ontology, which also captures important relationships
between these concepts. Once these core data elements have
been defined in the ontology, and the associated mappings
from the source information have been defined, they are used
to write queries and inference rules that will automatically
map patient data from the source information to the answers
required for specific reporting questions. For example, the
following two automated rules, written in the CycL language
[17], are used in constructing the answer to the CathPCI
report v4.3 seq. #6130 “Mid/Distal LAD, Diag Branches
Stenosis” question. CycL terms beginning with "?" are
treated as query variables.

(ist CCF-CAE-QueryMt
(and
(elementOf ?ARTERY-TYPE
(TheSet
MiddleLeftAnteriorDescendingArtery-Coronary
LeftAnteriorDescendingDistal Artery-Coronary
CoronaryArtery-Diagonal l
LateralFirstDiagonalCoronary Artery
CoronaryArtery-Diagonal2
LateralSecondDiagonalCoronaryArtery
CoronaryArtery-Diagonal3
Lateral ThirdDiagonalCoronaryArtery
LeftAnteriorDescendingMajorSeptalPerforator))
(cathOrPCIHasStenosisForCoronaryRegion
?7INDEX ?ARTERY-TYPE ?DEGREE)))
(implies
(and
(rdf-type ?INDEX InterventionalCatheterization)
(hasFinding ?INDEX ?STENOSIS)
(rdf-type ?STENOSIS CoronaryArteryStenosis-Finding)
(cCFCoronaryArtery ?STENOSIS ?REGION-TYPE)
(cCFVesselStenosisDegree ?STENOSIS ?DEGREE))
(cathOrPCIHasStenosisForCoronaryRegion
?INDEX ?REGION-TYPE ?DEGREE))

Because report generation involves time intervals that
cannot be known in advance, Cyc’s backward chaining
capabilities are used to select only the data that is needed for
a particular reporting period.

276 Current Bioinformatics, 2012, Vol. 7, No. 3

This automation of the reporting process, through
inference about core data elements, has not only reduced the
burden of duplicate effort, it has imposed transparency and
consistency that have reduced errors in the reported data.
Both the Society of Thoracic Surgeons and the American
College of Cardiology have certified Cleveland Clinic to use
SemanticDB to generate and submit data to their national
health care quality registries.

7. CONCLUSIONS

We have gained significant experience in the 8+ years
since we first started to apply semantic web technology to
electronic medical records in support of clinical research and
quality-of-care measurement. The benefits of this technology
have now been amply proven over multiple years of
production use at the Cleveland Clinic's Heart and Vascular
Institute. However, being a pioneer was not always easy.
Initially the biggest challenges were due to immature or
unavailable semantic web tools. This affected both initial
design of SemanticDB and our work efforts, as we had to
build much more of the infrastructure from scratch than
would now be necessary. Semantic web tooling has
improved greatly since the SemanticDB project began in
2003, so others embarking on this route will have an easier
voyage. Some lessons learned:

= Because RDF-related data capture tools were not
available, we placed more emphasis on XML than we
would now. Tools such as Callimachus [23] now enable
data to be captured directly to RDF.

= Performance has been adequate but not stellar, largely
because we have focused first on functionality. However,
it is clear that there are a number of ways that
performance could be improved significantly beyond
what we have been able to achieve if we decided to
address them. We have not seen any essential barriers to
a more efficient system.

= Ontology alignment with current medical practice has
been a challenge. For example, patient medical history is
usually collected by clinicians from the perspective of the
current encounter and often lack sufficient precision to
convert to core data elements that can be repurposed
downstream. The most effective solution to this problem
would involve modifications to the clinical
documentation practices that would better enable the
data's downstream reuse. Furthermore, there is a great
deal of potential benefit in applying semantic techniques
to the data collection process to make it more efficient,
accurate and user friendly. For example, semantic
inference could be used to detect errors or suggest data
entry elements based on knowledge of the patient's
history and treatment context based on machine learning.

= Maintaining semantic alignment in the face of
versioning: different versions of instance data, rules and
ontologies must be kept aligned as changes occur.
Although this coordination can be done manually, it
would be more accurate and reliable using automated
support.

= Qur experience indicates that Cyc’s use of optimal or
approximate computability, rather than provably
complete computability of inference rules, is an efficient

Pierce et al.

and fully sufficient approach to query generation and
answering in the context of clinical research and quality
reporting.

= Some of the most challenging difficulties encountered in
trying to use inference on clinical data in SemanticDB
derived from the lack of a complete longitudinal record
of the patient’s medical experience independent of a
given organization. In the United States, patient medical
records reside with health care organizations rather than
with patients. Consequently, when patients obtain their
health care from multiple institutions, each of these
institutions captures previous health care as medical
history, which often lacks details such as timing of events
needed by inference rules. The fuzziness of medical
history data makes it difficult to know the actual
sequence of and timing between events that appear as
variables in inference rules.

ACKNOWLEDGEMENTS

Support for development of SemanticDB was provided
by Cleveland Clinic with backing by Delos Cosgrove (CEO),
Martin Harris (CIO), and Joe Turk (Information Technology
Director), and a portion of a grant from the State of Ohio’s
Third Frontier human genetics and biomedical engineering
initiative. Developers who worked on the project in addition
to the authors include Sivaram Arabandi, Steven Battle,
Brian Beck, Alice Chan, En Cheng, John Clark, Samantha
Davis, Adam Dutko, Brendan Elliott, Peter Kisule, Jeffrey
Laing, James Leigh, William Stellhorn, and Larry Streepy.
Employees of Cycorp who worked on the project include
Blake Shepard, Keith Goolsby, Ronald Loui, David
Schiender, David Baxter and Steve Collins. Jerry Scott
brought Cleveland Clinic and Cycorp together and then
managed and coordinated the work of the different teams.
The project was also aided by input from members of a
scientific advisory board including James Hendler, Doug
Lenat, Brian Levy, and Barry Smith.

CONFLICT OF INTEREST
Declared none.

REFERENCES

[1] Blackstone EH, Lenat DB, Ishwaran H. In: Olsen L, Grossmann C,
McGinnis JM, Eds. Learning what works: Infrastructure required
for comparative effectiveness research workshop summary.
Washington DC, The National Academy Press 2011; 123-144.

2] Klyne G, Carroll JJ, McBride B; World Wide Web Consortium.
Resource Description Framework (RDF): Concepts and Abstract
Syntax. http://www.w3.org/TR/rdf-concepts/ (Accessed July 22,
2011).

[3] Berners-Lee T, Connolly D; World Wide Web Consortium.
Notation3 (N3): A readable RDF syntax. http://www.w3.org/-
TeamSubmission/n3/ (Accessed July 22, 2011).

[4] Cycorp, Inc.. The Cyc Knowledge Server. http://www.cyc.com-
/cyc/technology/whatiscyc (Accessed July 22, 2011).

[5] Wikipedia.org. Ontology (information science). http://en.wiki-
pedia.org/wiki/Ontology_%?28information_science%29 (Accessed
July 22,2011).

[6] Bechhofer S, van Harmelen F, Hendler J, Horrocks I, McGuinness
D, et al.; World Wide Web Consortium. OWL Web Ontology
Language Reference. http://www.w3.org/TR/owl-ref/ (Accessed
July 22,2011).

[7] Wood D, Eds, Ogbuji C, A Role for Semantic Web Technologies in
Patient Record Data Collection. Linking Enterprise Data. Springer
2010; pp 241-261.

SemanticDB: A Semantic Web Infrastructure for Clinical Research

(8]

[9]

[10]

[11]
[12]

(13]

(14]
[15]
[16]

Bray T, Paoli J, Sperberg-McQueen M, Maler E, Yergeau F; World
Wide Web Consortium. Extensible Markup Language (XML) 1.0
(Fifth Edition). http://www.w3.org/TR/xml/ (Accessed July 22,
2011).

Boyer J; World Wide Web Consortium. XForms 1.1. http:/-
www.w3.org/TR/xforms11/ (Accessed July 22, 2011).

Clark J; World Wide Web Consortium. XSL Transformations
(XSLT) Version 1.0. http://www.w3.org/TR/xslt (Accessed July
22,2011).

rdflib.net. RDFLib; A Python library for working with RDEF.
http://code.google.com/p/rdflib/ (Accessed July 22, 2011).
Prud'hommeaux E, Seaborne, A; SPARQL Query Language for
RDF. http://www.w3.org/TR/rdf-sparql-query/ (Accessed October
29,2011).

Elliott B, Cheng E, Thomas-Ogbuji C, Ozsoyoglu ZM. A complete
translation of SPARQL into efficient SQL. IDEAS Proceedings
2009; 31-42.

Oracle, Inc. Oracle Spatial and Oracle Locator. http:/tinyurl.com/-
31k53ne (Accessed July 22, 2011).

Wikipedia.org. Rete Algorithm. http://en.wikipedia.org/wiki/-
Rete_algorithm (Accessed July 22, 2011).

Cycorp, Inc.. The Cyc Knowledge Base(TM). http://cyc.com/cyc/t-
echnology/technology/whatiscyc_dir/whatsincyc (Accessed July
22,2011).

[17]
[18]
[19]
[20]
[21]

[22]
[23]
[24]

[25]

Current Bioinformatics, 2012, Vol. 7, No. 3 277

Cycorp, Inc.. The Syntax of CycL. http://www.cyc.com/cycdoc/-
ref/cycl-syntax.html (Accessed July 22, 2011).

SourceForge.net. 4Suite and related projects at SourceForge.
http://foursuite.sourceforge.net/ (Accessed July 22, 2011).

Google. FuXi 1.0: A Python-based, bi-directional logical reasoning
system. http://code.google.com/p/fuxi/ (Accessed July 22, 2011).
SourceForge.net. MySQL-Python. http://mysql-python.sourceforg-
e.net/ (Accessed July 22,2011).

Massachusetts Institute of Technology. Exhibit: Publishing
Framework for Data-Rich Interactive Web Pages. http://www.-
simile-widgets.org/exhibit/ (Accessed July 22, 2011).

Mozilla Foundation. Mozilla Firefox Web Browser. http://www.-
mozilla.com/en-US/firefox/new/ (Accessed July 22, 2011).
CallimachusProject.org. Callimachus. http:/callimachusproject.-
org/ (Accessed July 22, 2011).

iSoft, Inc. Viaduct(TM). http://www.bridgeforwardsoftware.com/-
viaduct.php (Accessed July 22,2011).

Ogbuji C, Blackstone E, Pierce C; World Wide Web Consortium.
Case study: A Semantic Web content repository for clinical
research. http://www.w3.0rg/2001/sw/sweo/public/UseCases/Cle-
velandClinic/ (Accessed July 22, 2011).

Received: July 27,2011

Revised: October 26, 2011

Accepted: October 30, 2011

